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We study the counterion distribution around a spherical macroion and its osmotic pressure in the framework
of the recently developed Debye-Hückel-hole-cavity(DHHC) theory. This is a local density functional ap-
proach which incorporates correlations into Poisson-Boltzmann theory by adding a free energy correction
based on the one-component plasma. We compare the predictions for ion distribution and osmotic pressure
obtained by the full theory and by its zero temperature limit with Monte Carlo simulations. They agree
excellently for weakly developed correlations and give the correct trend for stronger ones. In all investigated
cases the DHHC theory and its computationally simpler zero temperature limit yield better results than the
Poisson-Boltzmann theory.
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I. INTRODUCTION

The screening of charged macromolecules in an electro-
lyte solution is a long standing problem which has prompted
many attempts aiming at a theoretical explanation. In their
pioneering work Gouy[1] and Chapman[2] used what is
now referred to as Poisson-Boltzmann(PB) theory as the
basis for a mean field treatment of the electrical double layer.
This approach found its culmination about 30 years later in
the famous DLVO theory of charged colloids[3,4]. The ma-
jor flaw of these mean field approaches is their neglect of
correlations between the ions. The first attempt to work out
such correlations forhomogeneouselectrolytes are due to
Debye and Hückel[5], whose work remarkably(and at first
glance confusingly) is also based on(linearized) Poisson-
Boltzmann theory. In theinhomogeneouscase integral equa-
tion theories[6–9] and recent field theories[10] have be-
come very popular in calculating correlation corrections to
mean field double layers. However, in order to make
progress and calculate physical quantities, approximations
have to be made which, unfortunately, instead of clarifying
the physics sometimes tend to obscure it. Moreover, since in
some of these methods, the free energy is not defined in a
unique way, it becomes impossible to determine the specific
role played by each source of correlations in the system.

It would therefore be desirable to have a theoretical
framework which retains the simplicity of the early attempts,
but also accommodates correlation effects. This is the case
for density functional theories. It is possible to rigorously

rewrite the partition function of, say, a system of charged
colloids, as a density functional[11], in which the contribu-
tion beyond mean field is seen to be expressible as an addi-
tive correlation correction to the free energy density, whose
functional form is of course unknown and for which one has
to make a reasonable ansatz. The spirit is very similar to the
fundamental problem of integral equations, where one also
has to make an educated guess(namely, the closure relation),
but in the functional case the ansatz involves a free energy
density rather than a relation between two- and three-point
functions. It thus relies on a different kind of intuition and
thus permits complementary insight.

One suggestion for such a functional correction has been
made by Nordholm[12]. It relies on a Debye-Hückel treat-
ment of the one-component plasma(OCP) [13–15], in which
the short-distance failure of linearization is cleverly over-
come by postulating a correlation hole. Since beyond a cer-
tain density the resulting OCP free energy density is a con-
cave function of density, this favors the development of
inhomogeneities. In the pure OCP these are balanced by the
homogeneously charged background. However, if one uses
the OCP free energy density as a correlation correction to the
mean field functional describing the double layer at a
charged surface, one has all the charge opposite to the coun-
terions located on that surface, rather than homogeneously
distributed as a stabilizing background. The consequence is
that the double layer becomes unstable and all ions collapse
onto the surface, an effect which has been termed “structur-
ing catastrophe”[16,17].

To circumvent this instability without losing the physical
transparency of a local functional, we recently proposed the
Debye-Hückel-hole-cavity(DHHC) theory[18], in which we
suggested a convex correlation functional. This was achieved
by excluding the homogeneous background from a region of
radiusa around the central ion during the Debye charging
process. For counterions with size we identifieda tentatively
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as the ion diameter. We then applied our theory to the screen-
ing of a charged rod by its counterions. Comparisons of the
ionic charge distribution obtained showed a very good agree-
ment with the simulations for both monovalent and trivalent
counterions.

In this paper we test our theory for a different geometry:
charged spherical colloids with pointlike counterions. In gen-
eral, colloidal systems exhibit a rich phase behavior. The
particles can agglomerate at high densities, generally an ir-
reversible process, but they may also show a reversible
liquid-vapor phase separation similar to the one present in
simple molecular liquids. In order to prevent them from sim-
ply falling out of solution, one needs some kind of repulsion
between the particles. Introducing charged groups at the sur-
face of the colloid is one way to do that. The large gain in
entropy following the dissociation of a vast number of coun-
terions into solution stabilizes the system, because an aggre-
gation of colloids into a small subvolume would—for rea-
sons of global charge neutrality—also require the
counterions to occupy this small volume and thereby give up
much entropy. Of course, the final state of the system is
always a balance between energy and entropy, and if electro-
static interactions are strong, they will ultimately overcome
entropy and lead to aggregation of the colloids[19–23]. The
resulting phenomenon of “like charge attraction” has re-
ceived much attention, but it is of course only mysterious if
one forgets that the entire system is neutral. Admittedly, con-
fusion persists about whether such a phase separation could
also happen within mean field theory. Even though rigorous
proofs exist that PB theory will not permit attraction between
like charged macroions under reasonably general circum-
stances[24–26], and that in a cell model treatment the com-
pressibility will be positive[27], it has been claimed that an
expansion of the free energy of a charged colloidal suspen-
sion into zero-, one-, two-, etc., body terms will contain con-
figuration independent volume terms, which may drive a
phase separation even though the pair terms are purely repul-
sive [28–30]. Since unfortunately all these derivations rely
on a linearization of PB theory, which might render the find-
ings as artifacts[31–34], the issue appears to be open yet.

All these phenomena ultimately depend on the screening
produced by the ionic cloud, which in turn depends on the
geometry of the system. In this regard, a charged spherical
colloid differs from a charged rod in two fundamental ways:
the electrostatic potential and the spatial extension. The loga-
rithmic potential present in the case of charged cylinders
leads to the phenomenon known as Manning condensation
[35,36]. If the line charge density exceeds a critical thresh-
old, a certain fraction will remain loosely associated with the
rod, even at infinite dilution, and renormalize the rod charge.
A quantitative PB treatment of this provides a unique crite-
rion for defining the effective charge of the system, even at
finite densities[37,38].

The situation is different for charged spherical colloids,
which lose all their counterions in the limit of infinite dilu-
tion; thus, the colloidal charge does not get renormalized.
Still, one often talks about effective charges, which mimic
the stronger condensation of nonlinear theory within a lin-
earized treatment[39–44]. That, however, is clearly not a
physical but rather a formal renormalization, necessitated by

the simplified linear treatment, and is thus a different story.
Another important difference between the spherical and

the cylindrical symmetry lies in the spatial extent. If a
charged rod is infinitely long(as is usually assumed in the-
oretical treatments), the number of counterions at any given
distance from the rod is always infinite. In contrast, for a
charged spherical colloid the number of counterions at any
distance is always finite, since of course there is no direction
along which the colloid is infinite. Hence, fluctuations of the
radial charge density are more likely to be important in the
spherical case. However, for clarity we want to remind the
reader thatnoneof these fluctuations are included in theories
which only rely on theground stateof some density func-
tional (which also applies to the theory to be discussed here).

The systems we will consider here are strongly charged
colloids with pointlike ions of some specific valence and no
added salt inside a spherical cell. Since all the particles are
limited to be within one cell, correlations betweendifferent
macroions and between microions belonging todifferent
cells are not present. In our treatment we will thus exclu-
sively focus on questions regarding the description of a
single double layer. Furthermore, for pointlike ions the inter-
pretation of our cutoff parametera can obviously no longer
be the particle diameter. We will introduce an alternative
prescription fora, based again on local density consider-
ations and keeping in mind that its entire purpose is to pre-
vent the functional from becoming unstable.

We also derive an approximated version of our correlation
functional, namely, its zero temperature limit. It has the huge
advantage that it can be calculated analytically, while still
predicting ion profiles quite close to the full DHHC expres-
sion for a wide range of parameters. It also demonstrates the
spirit of our stabilization correction very directly.

Finally, we compare our predictions for ion profiles with
Monte Carlo simulations, in which we independently vary
valencev and plasma parameterG2D=Îps,B

2v3, wheres is
the density of surface charges and,B is the Bjerrum length.
It has been shown that beyondG2D.2.26 the force-distance
curves between charged plates cease to be monotonic, and
beyondG2D.2.45 attractions set in[45]. These effects result
from correlations between different double layers(such as,
for instance, ion interlocking[46,47]), which we cannot ac-
count for, and it has in fact been shown that they cannot be
described within a local density functional theory with a con-
vex correlation correction[26]. However, for the description
of a single double layer the regime of applicability of our
theory is larger, even though it clearly must fail for too high
coupling.

The paper is organized as follows. In Sec. II the DHHC
correlation functional is revisited and its zero temperature
limit is introduced. It is then applied as a local correlation
correction to the problem of screening of charged colloids in
Sec. III. The case of pointlike ions is discussed in detail and
the new expression fora is proposed. Technical details of the
simulations are described in Sec. IV. The results of the simu-
lations, full theory, and zero temperature limit are compared
in Sec. V, and we end with our conclusions in Sec. VI.
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II. THE DEBYE-HÜCKEL HOLE-CAVITY THEORY
REVISITED

The one component plasma consists ofN identical point
particles of valencev and (positive) unit chargeq inside a
volumeV with a uniform neutralizing background of charge
density −vqnB and dielectric constant«. As a first approxi-
mation the free energy of this system can be derived in the
framework of the Debye-Hückel approach. Then, the electro-
static potentialc created by some ion, fixed at the origin, for
instance, and all its surrounding ions satisfies the spherically
symmetric Poisson equation¹2csrd=c9srd+s2/rdc8srd=
−4prsrd /«. The charge density has a contribution from the
central ion,vqdsr d, a contribution from the surrounding ions
which are distributed—within mean field theory—according
to the Boltzmann factornPBsr d=vqnB exph−bvqcsrdj, and
finally from the charged background. Inserting this into the
Poisson equation and linearizing the exponential yields the
linearized Poisson-Boltzmann equation

c9srd +
2

r
c8srd = k2c −

4p

«
vqdsr d, s1d

wherek;Î4p,nB is an inverse screening length,,=,Bv2,
,B=bq2/« is the Bjerrum length, andb=1/kBT is the in-
verse thermal energy.

The solution of Eq.(1) is the well known expression
csrd=vq e−kr /«r. However, the problem with Debye-Hückel
theory is that the condition for linearization is obviously not
satisfied for smallr, where the potential is large. Indeed,
since all ions have the same sign of charge, this implies that
the particle density becomesnegativeand finally diverges at
the origin. This defect was overcome by the Debye-Hückel-
hole theory[12], which artificially postulates a correlation
hole of radiush around the central ion into which no other
ions are allowed to penetrate. In this case the charge density
is given by

rsrd = 5vqfdsr d − nBg: r ø h

−
«k2

4p
csrd: r . h.

s2d

The hole sizeh is fixed by excluding particles from a
region where their Coulomb energy is larger thankBT, which
gives 1+kh=s1+3k,d1/3. Once the potential at the position
of the central ion is known, the electrostatic contribution to
the free energy density,fDHHsnd, can be obtained by the De-
bye charging process[5,17].

The simple Debye-Hückel-hole(DHH) analysis of the
one-component plasma theory offers considerable insight
into ionic systems and is in good agreement with Monte
Carlo simulations[48] when fluctuations on the charge den-
sity are not relevant[49]. In principle, one can attempt to
include such fluctuations by applying the bulk density func-
tional theory in a local way. The basic idea is to obtain the
density distribution via functional minimization of the free
energy

FOCPfnsr dg = FPBfnsr dg +E d3r f corr„nsr d…. s3d

The first part, the PB free energy

FPBfnsr dg =E d3r hkBTnsr dfln„nsr dl3
… − 1g + felj, s4d

contains the entropy of the mobile ions(l is the thermal de
Broglie wavelength) and all electrostatic interactionsfel. For
the particular case to be discussed below, ions surrounding a
charged macroion, the latter term will be given by Eq.(16).
The expressionfcorr in Eq. (3) accounts for the correlation
between the mobile ions. The ion distribution can be derived
by minimization of Eq.(3) under the constraint of charge
neutrality. Unfortunately, this variational process does not
lead to a well defined density profile if one usesfDHHsnd as
the correlation correctionfcorr. The reason is thatfDHHsnd is a
concave function beyondn* <7.86/,3 and asymptotically
behaves as −n4/3. Since there is no stabilizing homoge-
neously charged background but rather a concentration of
opposite charge on the macroion surface, this favors the de-
velopment of a distribution in which all the ions sit on the
surface of the macroion.

The instabilities present in the DHH approach can be
properly overcome by recognizing that the failure of this
model is due to the too strong requirement of local charge
neutrality imposed by the local density approximation: A lo-
cal fluctuation leading to an increase of particle density im-
plies a corresponding increase in background density. There-
fore, the fluctuation is not suppressed by an increase in
repulsive Coulomb interactions but quite on the contrary fa-
vored by its decrease. To circumvent the instabilities occur-
ring at high densities, we proposed recently a simple solution
in which one excludes the neutralizing background from a
cavity of radiusa placed around the central ion(for details of
the derivation of the model see Ref.[18]). In this case, the
charge density can be split in three different regions, namely,

rsrd =5
vqdsr d: 0 ø r , a

− vqnB: a ø r , h

−
«k2

4p
csrd: h ø r ,

s5d

where the hole sizeh is chosen such as to yield the same
screening(i.e., the same amount of charge withinh) as the
DHH theory, which results in

kh = fsv − 1d3 + skad3g1/3, s6d

with v=s1+3k,d1/3. Using this prescription forh, the free
energy is obtained by Debye charging the fluid:

bfDHHC

nB
=

skad2

4
−E

1

v

dv̄H v̄2

2sv̄3 − 1d
Vsv̄d2/3

+
v̄3

f1 + Vsv̄d1/3gsv̄2 + v̄ + 1dJ , s7d

where
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Vsv̄d = sv̄ − 1d3 +
skad3

3k,
sv̄3 − 1d. s8d

Since the DHHC free energy is a convex function of den-
sity, fDHHC can thus be used to account for correlations
within a local density approximation.

A. The zero temperature limit DHHC „0…

The fact that the integral in Eq.(7) has to be solved nu-
merically obstructs a direct view on how thermodynamic sta-
bility is actually restored. Luckily, the crucial point can al-
ready be seen by focusing on the limit of zero temperature.
In this case Eq.(6) gives the expression

h = s3/4pnB + a3d1/3 s9d

for the correlation hole of the DHHC theory. This conve-
niently implies the potential to vanish outsideh. In other
words, the regiona, r ,h contains the right amount of
background charge to exactly neutralize the central ion, and
it is appropriate to refer to this limit as “complete screening.”
The potential in the two other regions then simplifies consid-
erably:

csrd =
v q

4per5 1 +
3r

2a
Sn̂B −

a

h
s1 + n̂BdD : 0 ø r , a

1 + n̂BS1 +
r3

2a3D −
3r

2h
s1 + n̂Bd : a ø r , h,

s10d

with the dimensionless scaled densityn̂B given by n̂B

= 4
3pa3 nB. After the Debye charging process one obtains the

following closed expression for the excess free energy den-
sity:

bfDHHC
s0d

nB
=

3,

4a
hn̂B − s1 + n̂Bd2/3 n̂B

1/3j. s11d

Note that the limitsa→0 andnB→` do not commute:
For high densities,bfDHHC

s0d scales asymptotically like
−,nB/2a, i.e., linear with density. However, in the limita
→0 Eq. (11) becomes

lim
a→0

bfDHHC
s0d = − ,S9p

16
D1/3

nB
4/3, s12d

and this concave scaling with density prevents it from being
used within a local density approximation. The zero tempera-
ture limit thus demonstrates in a clear way the key role
played by the cavity of sizea, which excludes the uniform
background from the vicinity of the central ion.

B. How to choose a proper value fora

Before applying this strategy to various valences and
ionic strengths, we need to specify the parametera. If the
counterions have a diameterd, no other charge should be
found at a distancer ,d. Therefore, in the spirit of the
Debye-Hückel theory, we tentatively interpreteda in Ref.
[18] as the ion diameter. This choice has led to an excellent

agreement with simulations when applied to rodlike poly-
electrolytes[18] with monovalent, diavalent, and trivalent
counterions(and no added salt), but it is of course infeasible
for point ions. In the following we suggest an alternative way
to choose a value fora which is independent of excluded
volume arguments, and show that this choice yields a good
description of our Monte Carlo(MC) results and trends.

We already mentioned the crucial role played bya in
maintaining the free energy convex. We also have seen in our
discussion of the zero temperature case that this is achieved
becausea in Eq. (9) balances the lengths3/4pnBd1/3, which
is basically the mean distance between ions. One could thus
try to self-consistently choosea proportional to the local ion
distance, but this would be unsuccessful: The balance would
not work, since each density increase would shrinka propor-
tionally, and the collapse couldnot be stopped. One thus
needs a length which is local andsomehowrelated to the ion
density—but which doesnot change as the local ion density
changes. This suggests to pick the average distance between
ionsas predicted by PB theory: a=f3/4pnPBsrdg1/3. Our den-
sity functional then quite naturally emerges as a next order
correction to the mean field result.

After these general considerations on the cutoffa, let us
continue with a practical remark. Far away from the charged
surface the ion density is always quite low, correlations are
weakly developed, and the precise value ofa is immaterial.
In fact, we only need a stabilizing cutoff close to the charged
surface, where the ion density is largest. This suggests the
following simplification: Instead of using a cutoff function
a(nPBsrd) depending on the local PB density, we pick a con-
stanta from a worst-case scenario, namely, the value which
it has at contact. This then finally yields the following pre-
scription fora:

a = S 3

4pnPBsr0dD
1/3

. s13d

In fact, since the cutoff will become important in the regime
of strong correlations, we could even replace the contact den-
sity nPBsr0d by its limiting value 2p,Bs2, where s is the
density of surface charges[50]. We then find

a

,
→

strong couplingS 3

8p2s2,B
4v6D1/3

= 0.721G2D
−4/3, s14d

where

G2D = Îps,B
2v3 s15d

is the 2D plasma coupling parameter[15]. Formula (14)
nicely demonstrates that in this limit the cavity size, mea-
sured in the appropriate length scale, (see also the scaling
discussion in the Appendix), is simply another measure of
the coupling strength.

III. APPLICATION TO THE SPHERICAL CELL MODEL

Charged spherical colloids are common and well charac-
terizable systems for studying many electrostatic phenomena
in a particularly transparent way, and they can often serve as
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simplified models for more complicated systems such as
polyelectrolytes or proteins. Solutions containing such
charged structures are indeed complicated to describe due to
the long-range nature of the Coulombic interactions. How-
ever, as long as these long-range forces are repulsive, the
colloids will create large correlation holes(“cells”) around
themselves which are void of other colloids. In a first ap-
proximation one can then decouple the macroion interactions
and concentrate on what’s going on within a single correla-
tion hole—an approach which is termed “cell model”[51].
The cell picture is known to give a good approximation for
many realistic systems, and most of the physics of the system
is determined by the screening of the macroion by the mi-
croions inside a cell. As a test case for our theory we shall
therefore consider a charged spherical colloid of radiusr0
containingZ charged groups, which are neutralized by point-
like ions of valencev. This macroion is embedded in the
center of a spherical cell of radiusR, corresponding thus to a
volume fractionf=sr0/Rd3 of colloids.

The thermodynamic behavior of the colloidal system is
determined by the distribution of mobile ions around the
macroion. This distribution is obtained by minimization of
the free energy functional, Eq.(3). For the colloidal system,
the interaction of the small ions with the macroion and the
mean field interaction between the counterions are given by

fel =
1

2
vqnsr dfcsr d + cfixsr dg, s16d

wherecsr d is the total electrostatic potential at positionr and
cfixsr d=−Zq/«r is the potential due to the charged macroion
alone. The interparticle correlations are taken into account by
employing fcorr= fDHHC. The minimization itself is accom-
plished by numerically solving the corresponding Euler-
Lagrange equation. Special care had to be taken to obtain a
sufficient accuracy of the rapidly varying density profiles
close to the colloid surface.

In the following we will concentrate on two observables.
The first is the integrated fraction of ions within a radial
distancer from the colloid center, which is given by

Psrd =
1

Z
E

r0

r

dr̄ 4pr̄2 vqnsr̄d. s17d

We will plot P as a function of −1/r, which is the Green
function of the spherical Laplacian. This will visually expand
the region close to the colloid, but it also has practical ad-
vantages when estimating the amount of closely associated
ions, see, e.g., Refs.[40,52].

Measuring all lengths in the full partition function of the
cell model in units of,=,Bv2 reveals that the distribution
function Psrd is invariant under a rescaling which keeps the
number of counterionsN=Z/v, the reduced colloid sizer0/,,
and the volume fractionf=sr0/Rd3 constant(see the Appen-
dix). The same holds for PB theory, and it is also true for
DHHC theory. In the latter case this not only relies on the
form of the DHHC free energy correction(7), but also on our
particular choice ofa. This invariance property is thus a
further support for Eq.(13).

The second observable we look at is the osmotic pressure
P. For PB-like free energy functionals with an additional
density term—like ourfcorr—it is given by [27]

bP = Fn + n
] fcorrsnd

] n
− fcorrsndG

n=nsRd
. s18d

For the PB case,fcorr;0, this reduces to the well known fact
that the pressure is given by the boundary density[53]. Since
this result actually holdsrigorously for the full restricted
primitive model [50], one could also argue that DHHC
theory is an approximate way to calculate the boundary den-
sity, and then calculate the pressure frombP=nsRd, i.e.,
leave out the additional termnf8− f. This would lead to a
different result, reminding us that self-consistency and con-
sistency with other rigorous results cannot generally be
achieved. We will always use the internally consistent equa-
tion (18) for our pressure calculations.

Inserting the DHHC expression(7) for fcorr, we find

bPDHHC

nsRd
= 1 +

skad2

4
−

1

6
E

1

v

dv̄F Fsv̄d
Vsv̄d1/3 +

2v̄ − 1

f1 + Vsv̄d1/3g

−
sv̄2 − v̄dFsv̄d

fVsv̄d1/3 + Vsv̄d2/3g2G , s19d

whereFsv̄d=sv̄−1d2+skad3v̄2/k,. In the zero temperature
limit DHHCs0d this simplifies considerably. A closed expres-
sion can easily be derived by combining Eqs.(11) and(18):

bPDHHC
0

nsRd
= 1 +

,

4a
n̂h3 − 2s1 + n̂−1d−1/3 − s1 + n̂−1d2/3j

s20d

=1 −
,

4a
n̂1/3h1 − 3 n̂2/3 + Osn̂dj, s21d

wheren̂; 4
3pa3nsRd. Observe that the contribution originat-

ing from thenf8− f term is negative for all densities.

IV. SIMULATIONAL DETAILS

The systems we study consist of a spherical macroion of
radiusr0 and(negative) central charge −Zq. Electroneutrality
is ensured by the presence ofN=Z/v pointlike counterions
of valencev, confined inside an impermeable spherical cell
of radius R. This also fixes the colloid volume fraction to
f=sr0/Rd3. No additional salt is added. The dielectric con-
stant« is assumed to be uniform throughout the system, such
that no image forces[54] occur. Our choices for the system
parameters can be found in Table I.

Standard canonical MC simulations following the Me-
tropolis scheme[55] were employed to sample the ion dis-
tributions. After an initial equilibration time of 200 000 MC
steps, where we attempted to move every ion once to a new
position, we sampled the system fors1.3−2d3106 MC
steps, producing 1300–2000 configurations for analysis. We
will measure energies in units ofkBT and use the coupling
length ,=,Bv2 as our unit of length(for monovalent ions
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under aqueous conditions and room temperature we would
have,=7.14Å, and the unit of concentration becomes,−3

=4.56M). In the following we will present MC results for
the integrated ion distribution, Eq.(17), and for the pressure,
Eqs.(19) and (20).

V. COMPARISON BETWEEN SIMULATIONS AND DHHC
THEORY

A. Ion distribution functions

Figure 1 shows the integrated charge distributionPsrd for
system 1 from Table I). The solid curve is the result from the
MC simulation, and it lies distinctly above the PB result
(dash-dotted curve), indicating a stronger condensation of
ions due to correlations neglected in PB theory. Most of this
enhancement of ion localization close to the colloid is cap-
tured by DHHC theory(dashed curve) or its zero tempera-
ture limit DHHCs0d. This is also evident from the local den-
sity nsrd, which relatively to PB is enhanced at close
proximity to the colloid, while it drops below PB at the outer
cell boundary. From what we have said in Sec. III this also

indicates that the pressure will be lower, and this is indeed
what we shall find(see below).

It should be noted that the 2D plasma parameterG2D
=2.5 is already slightly beyond the point where attractions
between two planes would arise[45]. We should not expect
DHHC theory to work for significantly higher plasma param-
eters, since it cannot account for effects such as attractions
[26]. However, we want to point out that here we only aim at
properties of a single electrostatic double layer and not at
phenomena arising from the interaction between two of
them, and in fact the agreement seen in Fig. 1 is very encour-
aging. It is also quite pleasing that the significantly simpler
zero temperature limit DHHCs0d from Eq. (11) yields essen-
tially the same result as the full DHHC theory.

Due to the scaling invariance of the partition function
discussed in the Appendix, a system with, e.g., divalent ions
and Z=200 or trivalent ions andZ=300 (and properly res-
caled Bjerrum lengths,B→,B/v2) shows exactly the same
distribution function(not shown).

In Fig. 2 we show distribution functionsPsrd for systems
2–4 from Table I. These have monovalent counterions and
only differ in their value of the plasma parameterG2D.
Clearly, a larger plasma parameter leads to an increased con-
densation(the curves are shifted up)—an effect which natu-
rally is already present in PB theory. However, apart from
this, at a larger plasma parameter the influence of correla-
tions becomes more important, and therefore thedeviation
between the PB prediction and the MC result increases for
increasingG2D, which is also clearly seen in Fig. 2. Again,
this effect is well captured by DHHC theory, which is always
much closer to the MC data than to the PB result, even
though its accuracy diminishes asG2D becomes large.

In Fig. 3 we show a “complementary” scan, in which we
fixed the value of the plasma parameterG2D=2, but changed
the counterion valence(systems 3, 5, and 6 from Table I).
Maybe surprisingly, anincrease in valence leads to ade-
creasein condensation if it happens at constant plasma pa-
rameter and colloid charge. If we had changedv from 1 to 2
and simultaneously replaced,B→,B/4 and Z→2Z, the
plasma parameter would also have remained unchanged, but
due to the scaling property of the partition function that

TABLE I. The parameters of the simulated systems. The volume
fraction was always chosen asf=sr0/Rd3=0.8 %.

System Z N v r0/, G2D nPBsr0d,3 a/,

1 100 100 1 2 2.5 20.77 0.23

2 120 120 1 5.477 1 0.4090 0.836

3 120 120 1 2.739 2 8.275 0.307

4 120 120 1 1.826 3 45.07 0.174

5 120 60 2 1.937 2 7.526 0.317

6 120 40 3 1.581 2 6.976 0.324

FIG. 1. Counterion distribution functionPsrd for system 1(see
Table I). The solid curve is the result of the MC simulation, while
the dash-dotted curve is the prediction from PB theory. The inset
shows the local densitynsrd. The increase in the counterion con-
densation due to correlations is well captured by the DHHC theory
(dashed curve) and its zero temperature limit DHHCs0d (dotted
curve). The difference innsrd between the latter two is invisible on
the chosen scale, and only DHHC is shown.

FIG. 2. Counterion distribution functionPsrd for systems 2, 3,
and 4 from Table I. The line styles are the same as in Fig. 1, the
counterions are monovalent, and the value of the plasma parameter
G2d is indicated.
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would actually have been true for the whole distribution
function. Instead, we have reduced,B→,B/23/2<,B/2.83
(i.e., a little less strongly), but have failed to increaseZ. The
net result is that condensation drops slightly. However, since
the plasma parameter, which is the best indicator for the
strength of correlations, remains the same, the deviation be-
tween PB theory and MC simulation are always about the
same(not shown in the figure). And as a consequence, the
deviation between DHHC theory, which approximately ac-
counts for correlations, and the MC simulation, which cap-
tures them all, is about the same in all three cases, and actu-
ally not very big.

B. Osmotic pressure

Another strategy to check how successful our approach
captures correlations is to compute the osmotic pressure. In
real systems this pressure will depend on correlations be-
tween ions ofdifferent cells, something which neither our
theory nor actually our simulation(of a single colloid) takes
into account. So in the following by “pressure” we do not,
strictly speaking, refer to the bulk pressure of a colloidal
suspension at some given volume fraction, but only to the
pressure exerted on the rigid wall atr =R of our cell model.

Within the simulations, the pressure is given by the con-
tact density atr =R, which was obtained by fitting the MC
density profile close to the cell boundary to a quadratic ex-
pressionnsrd=c1+c2sr −Rd2. An example for how the simu-
lated densities compare to the PB approximation, our ana-
lytic DHHC approach, and its simpler zero temperature limit
DHHCs0d, can be found in Fig. 4.

Table II shows the predictions for the pressure in the case
of pointlike ions given by PB , DHHC , and DHHCs0d theory,
as well as by MC simulations. In the case of PB theory and
MC the pressure is simply the density at the outer boundary,
while for the DHHC approach we employ Eq.(19) and for
DHHCs0d Eq. (20). These data, as well as Fig. 4, demonstrate
that—as anticipated—the simulated pressures lie below the
PB prediction. This decrease in pressure is rather accurately
captured by our functionalfDHHC and by its zero temperature

limit fDHHC
s0d with the MC result lying significantly below PB

and (in these cases) below DHHC and above DHHCs0d. The
difference between the two correlation corrected approaches
is consistent with the idea that entropic effects neglected in
fDHHC

s0d would push ions away from the macroions, or in other
words, that the zero temperature limit implies stronger cor-
relations than the regular DHHC theory and therefore yields
even lower pressures.

VI. CONCLUSIONS

In this paper we showed how to apply our previously
proposed local density functional approach based on a stable
correlation correction to a spherical macroion confined in a
spherical cell. One of the crucial parameters in this theory is
the sizea of the exclusion cavity of the background charge
density. For pointlike ions, we suggest to associate the exclu-
sion region with the mean distance between ions as predicted
by PB theory, and for simplicity use the value present at
colloidal contact.

By going to the zero temperature limit we were able to
derive an even simpler free energy functionalFDHHC

s0d , which
is almost as good as the full DHHC theory, but much easier
to handle. We also derived exact expressions for the osmotic
pressure in this system. We successfully compared our pre-
dictions to simulations of the same model and compared the
integrated counterion density and the osmotic pressure val-
ues for two complementary “scans” of the coupling strength,
namely, valence and plasma parameter. We demonstrated that
our local density functional approach based on a stable cor-
relation correction leads to a major improvement over the PB
prediction.
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FIG. 3. Counterion distribution functionPsrd for systems 3, 5,
and 6 from Table I. The line styles are the same as in Fig. 1, the
plasma parameter isG2d=2, and the value of the counterion valence
is indicated. For clarity, the PB curve is only shown forv=3.

FIG. 4. Counterion density close to the cell boundary for system
2. The dots denote the results of the MC simulation, the other line
styles are the same as in Fig. 1.
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APPENDIX

The canonical partition functionZ of the colloid sur-
rounded by its counterion is given by

Z =E p
i=1

N
d3pi d3r i

h3NN!
e−bH, sA1d

where N=Z/v is the total number of counterions and the
Hamiltonian H=T+V splits into kinetic and potential de-
grees of freedom. In the classical description employed here
the kinetic partT will contribute the usual factorl−3N to the
partition function, wherel is the thermal de Broglie wave-
length. The potential energy can be expressed as

V = − No
i

,

ur iu
+

1

2o
iÞ j

,

ur i − r ju
. sA2d

After rescaling all length by,, i.e., introducingx : =r /,, the
total partition function can be written as

Z =
1

N!
S ,

l
D3NE

x0

x0/f1/3

p
k

d3xk

3expH− No
i

1

uxiu
+

1

2o
iÞ j

1

uxi − x ju
J . sA3d

In this form it becomes evident that appropriately scaled
thermal observables such as the integrated charge density
(measured in units of,−3) or the pressure(measured in units
of kBT,−3) are invariant under system changes which leave
the number of counterionsN, the rescaled colloid sizex0

=r0/,, and the volume fractionf fixed.
Poisson-Boltzmann theory shows the same invariance

property, as does the approximate density functional theory
we are proposing in this paper.
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