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Screening of spherical colloids beyond mean field: A local density functional approach
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We study the counterion distribution around a spherical macroion and its osmotic pressure in the framework
of the recently developed Debye-Hiickel-hole-cayidHHC) theory. This is a local density functional ap-
proach which incorporates correlations into Poisson-Boltzmann theory by adding a free energy correction
based on the one-component plasma. We compare the predictions for ion distribution and osmotic pressure
obtained by the full theory and by its zero temperature limit with Monte Carlo simulations. They agree
excellently for weakly developed correlations and give the correct trend for stronger ones. In all investigated
cases the DHHC theory and its computationally simpler zero temperature limit yield better results than the
Poisson-Boltzmann theory.
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[. INTRODUCTION rewrite the partition function of, say, a system of charged
colloids, as a density function@l1], in which the contribu-
The screening of charged macromolecules in an electration beyond mean field is seen to be expressible as an addi-
lyte solution is a long standing problem which has promptedive correlation correction to the free energy density, whose
many attempts aiming at a theoretical explanation. In theifunctional form is of course unknown and for which one has
pioneering work Gouy[1] and Chapmar2] used what is to make a reasonable ansatz. The spirit is very similar to the
now referred to as Poisson-Boltzma®B) theory as the fundamental problem of integral equations, where one also
basis for a mean field treatment of the electrical double layehas to make an educated guésamely, the closure relatign
This approach found its culmination about 30 years later ifout in the functional case the ansatz involves a free energy
the famous DLVO theory of charged colloif3,4]. The ma- ~ density rather than a relation between two- and three-point
jor flaw of these mean field approaches is their neglect ofunctions. It thus relies on a different kind of intuition and
correlations between the ions. The first attempt to work outhus permits complementary insight. ,
such correlations fohomogeneouslectrolytes are due to  One suggestion for such a functional correction has been
Debye and Hiickel5], whose work remarkablgand at first ~Made by Nordholn12]. It relies on a Debye-Htickel treat-
glance confusinglyis also based orlinearized Poisson- ment of the one-component plast@CP [13-15, in which

Boltzmann theory. In thenhomogeneousase integral equa- E:Zinseht?;tgjéssﬁ?;[?ng;agucggrrcv)aflauir:)ia%?enogirlliedt?ev;orlri/ d C;V?:re'r_
tion theories[6-9) and recent field theoriegl0] have be- tain density the resulting OCP free energy density is a con-

come very popular in calculating correle_ltion corrections ©cave function of density, this favors the development of
mean field double layers. However, n order to ma_‘keinhomogeneities. In the pure OCP these are balanced by the
progress and calcula}te physical quantities, approx'mat!onﬁomogeneously charged background. However, if one uses
have to be made .Wh'Ch’ unfortunately, !nstead of clar'|fy|ngthe OCP free energy density as a correlation correction to the
the physics sometimes tend to obscure it. Moreover, since ifjoan field functional describing the double layer at a
some of thes_e methods,_ the fr?e energy 1s not defined N harged surface, one has all the charge opposite to the coun-
unique way, it becomes impossible to determine the specifigying ocated on that surface, rather than homogeneously
rolcla playelg b% ea?h sogrczof .cotr):elanor;]s in the intem' distributed as a stabilizing background. The consequence is
t would therefore be desirable to have a t eoreﬂcalthat the double layer becomes unstable and all ions collapse
framework which retains the simplicity of the early attempts, ¢, the surface, an effect which has been termed “structur-
but also accommodates correlation effects. This is the caqﬁg catastrophe] 16,17
for density functional theories. It is possible to rigorously To circumvent this instability without losing the physical
transparency of a local functional, we recently proposed the
Debye-Hiickel-hole-cavitypHHC) theory[18], in which we

*Electronic address: barbosa@if.ufrgs.br suggested a convex correlation functional. This was achieved
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1539-3755/2004/68)/0514019)/$22.50 69 051401-1 ©2004 The American Physical Society



BARBOSAet al. PHYSICAL REVIEW E 69, 051401(2004

as the ion diameter. We then applied our theory to the screerthe simplified linear treatment, and is thus a different story.
ing of a charged rod by its counterions. Comparisons of the Another important difference between the spherical and
ionic charge distribution obtained showed a very good agreehe cylindrical symmetry lies in the spatial extent. If a
ment with the simulations for both monovalent and trivalentcharged rod is infinitely longas is usually assumed in the-

CO‘lmtt%r.io”S' test th ¢ gif ; ; _oretical treatmenys the number of counterions at any given

n this paper we test our theory Tor a different geomelry. jiqiance from the rod is always infinite. In contrast, for a
charged spherical colloids with pointlike counterions. In gen- harged spherical colloid the number of counterions at any
eral, colloidal systems exhibit a rich phase behavior. The

particles can agglomerate at high densities, generally an jdistance is always fln_lte_, since of course there is no direction
reversible process, but they may also show a reversibl@long which the colloid is infinite. Hence, fluctuations of the
liquid-vapor phase separation similar to the one present ifi@dial charge density are more likely to be important in the
simple molecular liquids. In order to prevent them from sim-spherical case. However, for clarity we want to remind the
ply falling out of solution, one needs some kind of repulsionreader thahoneof these fluctuations are included in theories
between the particles. Introducing charged groups at the suwhich only rely on theground stateof some density func-
face of the colloid is one way to do that. The large gain intional (which also applies to the theory to be discussed)here
enFropy_foIIowmg_ the d|s§QC|at|on of a vast number of coun-  The systems we will consider here are strongly charged
terions into solution stabilizes the system, because an aggrey|ioids with pointlike ions of some specific valence and no
gation of colloids into a small subvolume would—for rea- 4404 ot inside a spherical cell. Since all the particles are

sons (.)f global charge neutrality—also require. thelimited to be within one cell, correlations betwedifferent
counterions to occupy this small volume and thereby give up

much entropy. Of course, the final state of the system iénalllcrmons atnd betwteeln mlcrtomr;s bilongmg” 'f{:tr]]fferentl
always a balance between energy and entropy, and if electr§® siarfe not present. In our readmen r\]/ve c\jN' uS excfu—
static interactions are strong, they will ultimately overcomeS!V€!Y focus on questions regarding the description of a

entropy and lead to aggregation of the collojd§—23. The single double layerFurthermore, for pointlike ions the inter-

resulting phenomenon of “like charge attraction” has re-Pretation of our cutoff parameter can obviously no longer
ceived much attention, but it is of course only mysterious ifoe the particle diameter. We will introduce an alternative
one forgets that the entire system is neutral. Admittedly, conPrescription fora, based again on local density consider-
fusion persists about whether such a phase separation couddons and keeping in mind that its entire purpose is to pre-
also happen within mean field theory. Even though rigoroug/ent the functional from becoming unstable.

proofs exist that PB theory will not permit attraction between We also derive an approximated version of our correlation
like charged macroions under reasonably general circumfunctional, namely, its zero temperature limit. It has the huge
stanceg24-24, and that in a cell model treatment the com- advantage that it can be calculated analytically, while still
pressibility will be positive[27], it has been claimed that an predicting ion profiles quite close to the full DHHC expres-
expansion of the free energy of a charged colloidal suspersion for a wide range of parameters. It also demonstrates the
sion into zero-, one-, two-, etc., body terms will contain con-spirit of our stabilization correction very directly.

figuration independent volume terms, which may drive a = Finally, we compare our predictions for ion profiles with

phase separation even though the pair terms are purely repytonte Carlo simulations, in which we independently vary
sive [28-3Q. Since unfortunately all these derivations rely \,51ancev and plasma paramet&hp= Vr—wﬂz

A ; . : zv3, wherea is
on a linearization of PB theory, which might render the f'nd'the density of surface charges afglis the

. . : Bjerrum length.
ings as artifact§31-34, the issue appears to be open yet. It has been shown that beyohdy=2.26 the force-distance
All these phenomena ultimately depend on the screenin

produced by the ionic cloud, which in turn depends on th Burves between charged plates cease to be monotonic, and

. ._heyondl',p=2.45 attractions set if45]. These effects result
geometry of the system. In this regard, a charged SpherIC{;}lrom correlations between different double layéssich as
colloid differs from a charged rod in two fundamental ways: y ’

the electrostatic potential and the spatial extension. The logd®" Instance, ion interlocking46,47), which we cannot ac-
rithmic potential present in the case of charged cylinder£ount for, and it has in fact been shown that they cannot be
leads to the phenomenon known as Manning condensatidigscribed vv_lthm a Ioca] density functional theory Wlth a con-
[35,36. If the line charge density exceeds a critical thresh-VeX correlation correctiof26]. However, for the description
old, a certain fraction will remain loosely associated with theof @ single double layer the regime of applicability of our
rod, even at infinite dilution, and renormalize the rod chargetheory is larger, even though it clearly must fail for too high
A quantitative PB treatment of this provides a unique crite-coupling.
rion for defining the effective charge of the system, even at The paper is organized as follows. In Sec. Il the DHHC
finite densitieq37,3§. correlation functional is revisited and its zero temperature
The situation is different for charged spherical colloids,limit is introduced. It is then applied as a local correlation
which lose all their counterions in the limit of infinite dilu- correction to the problem of screening of charged colloids in
tion; thus, the colloidal charge does not get renormalizedSec. lll. The case of pointlike ions is discussed in detail and
Still, one often talks about effective charges, which mimicthe new expression fa is proposed. Technical details of the
the stronger condensation of nonlinear theory within a lin-simulations are described in Sec. IV. The results of the simu-
earized treatmenf39-44. That, however, is clearly not a lations, full theory, and zero temperature limit are compared
physical but rather a formal renormalization, necessitated bin Sec. V, and we end with our conclusions in Sec. VI.
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Il. THE DEBYE-HUCKEL HOLE-CAVITY THEORY ;
REVISITED Focp[n(r)]=FpB[n(r)]+f d feor(n(r)). 3

The one component plasma consistshbfdentical point  The first part, the PB free energy
particles of valence and (positive) unit chargeq inside a
volumeV with a uniform neutralizing background of charge
density -vqng and dielectric constart. As a first approxi-
mation the free energy of this system can be derived in the ) o )
framework of the Debye-Hiickel approach. Then, the electrocontains the entropy of the mobile iofs is the thermal de
static potentialy created by some ion, fixed at the origin, for Broglie wavelengthand all electrostatic interactiorfg,. For
instance, and all its surrounding ions satisfies the sphericallffe particular case to be discussed below, ions surrounding a
symmetric Poisson equatioV2y(r)=¢/"(r)+(2/r)y'(r)= charged mac_roion, _the latter term will be given by Etﬁ)
—~47p(r)/s. The charge density has a contribution from the The expressioric,, in Eq. (3) accounts for the correlation
central ion,wqd(r), a contribution from the surrounding ions P€tween the mobile ions. The ion distribution can be derived
which are distributed—uwithin mean field theory—according PY Minimization of Eq.(3) under the constraint of charge
to the Boltzmann factonpg(r)=vqng expi-Buqi(r)}, and neutrality. Unfortunately, this variational process does not

finally from the charged background. Inserting this into theIead to a well defined density profile if one usigg(n) as

Poisson equation and linearizing the exponential yields thé€ correlation correctioft,y. The reason is thabpn(n) is a
linearized Poisson-Boltzmann equation concave function beyond =7.86/¢°> and asymptotically

behaves as r*3. Since there is no stabilizing homoge-
) A neously charged background but rather a concentration of
) fiN_ 2 ™ opposite charge on the macroion surface, this favors the de-
yin + Y (N =r"y- ?vqﬁ(r), (1) velopment of a distribution in which all the ions sit on the
surface of the macroion.
. . . o The instabilities present in the DHH approach can be
where;2<=\j47r(in3 is an inverse screening length={sv”,  hroherly overcome by recognizing that the failure of this
€s=p0"/¢ is the Bjerrum length, ang=1/kgT is the in- 546 is due to the too strong requirement of local charge
verse thermgl energy. . . neutrality imposed by the local density approximation: A lo-
The so_lgrtlon of Eq.(1) is the well known expression .. fcyation leading to an increase of particle density im-
¢(r)=vq €*"/er. However, the problem with Debye-Hiickel ,jieq 4 corresponding increase in background density. There-
theory is that the condition for linearization is obviously nOtfore, the fluctuation is not suppressed by an increase in
satisfied for smalir, where the potential is large. Indeed, yopisive Coulomb interactions but quite on the contrary fa-
since all ions have the same sign of charge, this implies thafyred py its decrease. To circumvent the instabilities occur-
the particle density becomesgativeand finally diverges at  (jng 4t high densities, we proposed recently a simple solution
the origin. This defect was overcome by the Debye-Hlickeli, \yhich one excludes the neutralizing background from a
hole theory[12], which artificially postulates a correlation cavity of radiusa placed around the central igfor details of
hole of radiush around the central ion into which no other e gerivation of the model see R¢18]). In this case, the

@onsf are allowed to penetrate. In this case the charge de”S'Bharge density can be split in three different regions, namely,
is given by

Fpeln(r)]= f d®r {keTn(r)[IN(N(r)A3) = 1]+ fo},  (4)

vgdér): O0<r<a

UQ[5(r3—nB]Z r<h o(1) = —vgnB: asr<h &
P = “2un: r>h. 2 —%L//(r): h<r,

47

The hole sizeh is fixed by excluding particles from a Where the hole sizé is chosen such as to yield the same
region where their Coulomb energy is larger thaff, which ~ screening(i.e., the same amount of charge withip as the
gives 1+kh=(1+3«€)"3. Once the potential at the position DHH theory, which results in
of the central ion is known, the electrostatic contribution to
the free energy densitfpu(n), can be obtained by the De- kh=[(w= 17+ k)75, 6)
bye charging proces$,17]. ' with w=(1+3«¢)'3. Using this prescription foh, the free

The simple Debye-Huckel-holeéDHH) analysis of the = energy is obtained by Debye charging the fluid:
one-component plasma theory offers considerable insight
into ionic systems and is in good agreement with Monte Bfoune  (k@)? (¢ ] &
Carlo simulationg48] when fluctuations on the charge den- n—B = 4 _f do m
sity are not relevanf49]. In principle, one can attempt to
include such fluctuations by applying the bulk density func- P
tional theory in a local way. The basic idea is to obtain the * [1+Q(0) PP +0+1) |
density distribution via functional minimization of the free
energy where

9(5)2/3
1

()
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— . (ka)® —, agreement with simulations when applied to rodlike poly-

o) =(0-1) +W(w -1. (8)  electrolytes[18] with monovalent, diavalent, and trivalent
counteriongand no added saltbut it is of course infeasible

Since the DHHC free energy is a convex function of den-for point ions. In the following we suggest an alternative way
sity, fpuyc can thus be used to account for correlationsto choose a value foa which is independent of excluded

within a local density approximation. volume arguments, and show that this choice yields a good
description of our Monte CarlgMC) results and trends.
A. The zero temperature limit DHHC © We already mentioned the crucial role played #yin

) ) maintaining the free energy convex. We also have seen in our
The fact that the integral in Eq7) has to be solved nu- giscyssion of the zero temperature case that this is achieved
merically obstructs a direct view on how thermodynamic stayecause in Eq. (9) balances the lengt8/4mng)Y/3, which
bility is actually restoreq. Luckily, the _cruC|aI point can al- is basically the mean distance between ions. One could thus
reagy be seen by chu5|nhg on the I'm't of zero temperaturetry to self-consistently choose proportional to the local ion
In this case Eq(6) gives the expression distance, but this would be unsuccessful: The balance would
h = (3/4mng + a%) Y3 9 not work, since each density increase would shergcopor-

_ _ tionally, and the collapse couldot be stopped. One thus
for the correlation hole of the DHHC theory. This conve- needs a length which is local asdmehowelated to the ion
niently implies the potential to vanish outsidie In other  density—but which doesot change as the local ion density
words, the regiona<r<h contains the right amount of changes. This suggests to pick the average distance between
background charge to exactly neutralize the central ion, angbnsas predicted by PB theorg=[3/4mnpg(r)]¥3. Our den-

it is appropriate to refer to this limit as “complete screening.”sjty functional then quite naturally emerges as a next order
The potential in the two other regions then simplifies considgrrection to the mean field result.

erably: After these general considerations on the cugpffet us
3r a continue with a practical remark. Far away from the charged
1 +—<ﬁB --(1 +ﬁB)>: 0sr<a surface the ion density is always quite low, correlations are

r) = v 9 2a h weakly developed, and the precise valueadé immaterial.
Arer In fact, we only need a stabilizing cutoff close to the charged

surface, where the ion density is largest. This suggests the
following simplification: Instead of using a cutoff function

(10 a(npg(r)) depending on the local PB density, we pick a con-
with the dimensionless scaled densify given by fg stanta from a worst-case scenario, namely, the value which
:§Wa3 ng. After the Debye charging process one obtains thdt h_as_ at contact. This then finally yields the following pre-
following closed expression for the excess free energy derscription fora:

1+0 (1+r—3)—i(1+ﬁ ): asr<h
B\" "2a3/ 2n B/ 2 !

sity: 3 1/3
a=|{—| . (13
£0) 3C . . . (4 Npg(r )
Bibhnc - 4_{nB -1 +nB)2/3 né’ . (11) . 77' pe(lo) . . |
Ng a In fact, since the cutoff will become important in the regime

Note that the limitsa— 0 andng— do not commute:; Of strong correlations, we could even replace the contact den-
For high densities, Bf, . scales asymptotically like sity npg(ro) by its limiting value 2rfg0®, where o is the
—¢ng/2a, i.e., linear with density. However, in the limig  density of surface charggS0]. We then find
—0 Eg.(11) becomes gstrong couplin 3 1/3

———— | =0.7211%23, (14
i 0 97\ 4 4 8m2a?lgv® ' 2D
a—0 16 Whel’e
and this concave scaling with density prevents it from being
used within a local density approximation. The zero tempera-
ture limit thus demonstrates in a clear way the key roleis the 2D plasma coupling parametgr5]. Formula (14)
played by the cavity of siza, which excludes the uniform nicely demonstrates that in this limit the cavity size, mea-

(15

I'yp= Vmol3u®

background from the vicinity of the central ion. sured in the appropriate length scdlg€see also the scaling
discussion in the Appendixis simply another measure of
B. How to choose a proper value fora the coupling strength.

Before applying this strategy to various valences and
ionic strengths, we need to specify the parametelf the
counterions have a diametdr no other charge should be
found at a distance <d. Therefore, in the spirit of the Charged spherical colloids are common and well charac-
Debye-Huckel theory, we tentatively interpretadin Ref.  terizable systems for studying many electrostatic phenomena
[18] as the ion diameter. This choice has led to an excellenin a particularly transparent way, and they can often serve as

Ill. APPLICATION TO THE SPHERICAL CELL MODEL
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simplified models for more complicated systems such as The second observable we look at is the osmotic pressure
polyelectrolytes or proteins. Solutions containing suchll. For PB-like free energy functionals with an additional
charged structures are indeed complicated to describe due #@ensity term—Iike ouff.,,—it is given by[27]

the long-range nature of the Coulombic interactions. How-

ever, as long as these long-range forces are repulsive, the Bl = [n+nm—fcorﬁ(ﬂ) _ (18)
colloids will create large correlation holg&cells”) around an n=n(R)

themselves which are void of other colloids. In a first ap- he PB casd....=0. this red h Ik f
proximation one can then decouple the macroion interaction or the caseor=0, this reduces to the well known fact
that the pressure is given by the boundary deri&8}. Since

and concentrate on what's going on within a single correla—h_ | v holdsi v for the full cted
tion hole—an approach which is termed “cell modggy). ~ NIS result actually holdsigorously for the full restricte

The cell picture is known to give a good approximation for primitiv_e madel [59]’ one could also argue that DHHC
o meory is an approximate way to calculate the boundary den-

is determined by the screening of the macroion by the miSity: and then calculate the pressure frggfi=n(R), i.e.,

croions inside a cell. As a test case for our theory we shaf€@ve out the additional termf’—f. This would lead to a

therefore consider a charged spherical colloid of radiys different result, reminding us that self-consistency and con-
containingZ charged groups, which are neutralized by point-SiStency with other rigorous results cannot generally be
like ions of valencev. This macroion is embedded in the achieved. We will always use the internally consistent equa-

center of a spherical cell of radif® corresponding thus to a 10N (18) for our pressure calculations. _
volume fractioné=(ro/R)? of colloids. Inserting the DHHC expressiafT) for f.,,, we find

The thermodynamic behavior of the colloidal system is Bpnne » (ka)? 1fw d‘{ (@) 2o—1
= - = w
4 6J,

determined by the distribution of mobile ions around the = Tt 7
macroion. This distribution is obtained by minimization of n(R) Qo) [1+0(0)]
the free energy functional, E¢3). For the colloidal system, (0® - 0)®(w)
the interaction of the small ions with the macroion and the T @R O 20372 | (19
mean field interaction between the counterions are given by [©2(w) ()
L where ®(w)=(w-1)2+(xa)°w?/ k€. In the zero temperature
imi O this simplifi i i
for= —oqn(n)[gAr) + i ()], (16) Ilmlt DHHC : this S|mpl|f|es consdgrgbly. A closed exp.res
2 sion can easily be derived by combining E¢EL) and(18):
wherey(r) is the total electrostatic potential at positioand B e ¢ NENETE Y
ik (r)=—2q/ er is the potential due to the charged macroion n(R) 1 +4—an{3 S AL+ (14T

alone. The interparticle correlations are taken into account by
employing f.o=fpuuc: The minimization itself is accom-
plished by numerically solving the corresponding Euler-
Lagrange equation. Special care had to be taken to obtain a =1 _£ﬁ1/3{1 - 3723+ O(A)} (21)
sufficient accuracy of the rapidly varying density profiles da ’
close to the colloid surface.
In the following we will concentrate on two observables. . ,
The first is the integrated fraction of ions within a radial N9 from thenf
distancer from the colloid center, which is given by

(20)

wheref= §Wa3n(R). Observe that the contribution originat-
—f term is negative for all densities.

1 (" IV. SIMULATIONAL DETAILS
P(r) = Zf dr 4mr? vgn(r). (17)
r

0 The systems we study consist of a spherical macroion of

radiusry and(negative central charge Zg. Electroneutrality

We will plot P as a function of -1/, which is the Green is ensured by the presence NEZ/v pointlike counterions
function of the spherical Laplacian. This will visually expand of valencev, confined inside an impermeable spherical cell
the region close to the colloid, but it also has practical ad-of radiusR. This also fixes the colloid volume fraction to
vantages when estimating the amount of closely associatedl=(r,/R)%. No additional salt is added. The dielectric con-
ions, see, e.g., Ref§40,52. stante is assumed to be uniform throughout the system, such

Measuring all lengths in the full partition function of the that no image forceg54] occur. Our choices for the system
cell model in units of¢=¢gv? reveals that the distribution parameters can be found in Table I.
function P(r) is invariant under a rescaling which keeps the  Standard canonical MC simulations following the Me-
number of counterionsl=Z/v, the reduced colloid sizg/€,  tropolis schemdg55] were employed to sample the ion dis-
and the volume fractiow=(r,/R)® constanisee the Appen- tributions. After an initial equilibration time of 200 000 MC
dix). The same holds for PB theory, and it is also true forsteps, where we attempted to move every ion once to a new
DHHC theory. In the latter case this not only relies on theposition, we sampled the system fgi.3-2 % 10° MC
form of the DHHC free energy correcti@i), but also on our  steps, producing 1300—2000 configurations for analysis. We
particular choice ofa. This invariance property is thus a will measure energies in units ¢§T and use the coupling
further support for Eq(13). length ¢=¢gv? as our unit of length(for monovalent ions
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TABLE I. The parameters of the simulated systems. The volume
fraction was always chosen gs=(ro/R)3=0.8 %.

System Z N v 1ol Typ npglrg€® alt

1 100 100 1 2 25 20.77 0.23 =
2 120 120 1 5.477 1 0.4090 0.836 n%
3 120 120 1 2.739 2 8.275 0.307
4 120 120 1 1.826 3 45.07 0.174
5 120 60 2 1.937 2 7.526 0.317
6 120 40 3 1581 2 6.976 0.324

ol ] ] ]

(S0
=
[l
o=

1
1.25 ~15
—ro/r

under aqueous conditions and room temperature we would
have ¢=7.14A, and the unit of concentration becomé&s FIG. 2. Counterion distribution functioR(r) for systems 2, 3,
=4.56M). In the following we will present MC results for and 4 from Table I. The line styles are the same as in Fig. 1, the
the integrated ion distribution, E¢L7), and for the pressure, cour_wtgrio_ns are monovalent, and the value of the plasma parameter
Egs.(19) and (20). I'5q is indicated.
indicates that the pressure will be lower, and this is indeed
what we shall find'see below.

V. COMPARISON BETWEEN SIMULATIONS AND DHHC It should be noted that the 2D plasma paramdigs
THEORY =2.5 is already slightly beyond the point where attractions
o ) between two planes would ari$é5]. We should not expect
A. lon distribution functions DHHC theory to work for significantly higher plasma param-

eters, since it cannot account for effects such as attractions

system 1 from Table)l The solid curve is the result from the [26]- However, we want to point out that here we only aim at
MC simulation, and it lies distinctly above the PB result Properties of a single electrostatic double layer and not at
(dash-dotted curve indicating a stronger condensation of Ph€nomena arising from the interaction between two of
ions due to correlations neglected in PB theory. Most of thidhem, and in fact the agreement seen in Fig. 1 is very encour-
enhancement of ion localization close to the colloid is cap-29ing- It is also quite pleasing that the significantly simpler
tured by DHHC theorydashed curveor its zero tempera- 2€r0 temperature limit DHH® from Eq. (11) yields essen-

ture limit DHHC. This is also evident from the local den- tially the same result as the full DHHC theory. _
sity n(r), which relatively to PB is enhanced at close Due to the scaling invariance of the partition function

o . . discussed in the Appendix, a system with, e.g., divalent ions
ty to th Il hile it low PB at th t i )
proximity to the colloid, while it drops below a e outer and Z=200 or trivalent ions and=300 (and properly res-

cell boundary. From what we have said in Sec. lll this alsoCaled Bjerrum lengthgs — £5/v?) shows exactly the same
1 distribution function(not shown.
! ! ! L. In Fig. 2 we show distribution functionB(r) for systems

[ ) ] 2—4 from Table I. These have monovalent counterions and
only differ in their value of the plasma parametEpp.
Clearly, a larger plasma parameter leads to an increased con-
densationthe curves are shifted yp-an effect which natu-
rally is already present in PB theory. However, apart from
this, at a larger plasma parameter the influence of correla-
tions becomes more important, and therefore dbgiation
between the PB prediction and the MC result increases for
increasingl’,p, which is also clearly seen in Fig. 2. Again,
this effect is well captured by DHHC theory, which is always
much closer to the MC data than to the PB result, even
though its accuracy diminishes &sp becomes large.

In Fig. 3 we show a “complementary” scan, in which we

FIG. 1. Counterion distribution functioR(r) for system 1(see  fixed the value of the plasma paramefgp=2, but changed
Table )). The solid curve is the result of the MC simulation, while the counterion valencgsystems 3, 5, and 6 from Table. |
the dash-dotted curve is the prediction from PB theory. The inseMaybe surprisingly, arincreasein valence leads to ae-
shows the local density(r). The increase in the counterion con- Creasein condensation if it happens at constant plasma pa-
densation due to correlations is well captured by the DHHC theoryameter and colloid charge. If we had changefdom 1 to 2
(dashed curveand its zero temperature limit DHHE (dotted ~and simultaneously replaceflz— ¢g/4 and Z—2Z, the
curve. The difference im(r) between the latter two is invisible on plasma parameter would also have remained unchanged, but
the chosen scale, and only DHHC is shown. due to the scaling property of the partition function that

Figure 1 shows the integrated charge distributgn) for
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FIG. 3. Counterion distribution functioR(r) for systems 3, 5, FIG. 4. Counterion density close to the cell boundary for system

and 6 from Table I. The line styles are the same as in Fig. 1, the@. The dots denote the results of the MC simulation, the other line
plasma parameter IS4=2, and the value of the counterion valence styles are the same as in Fig. 1.
is indicated. For clarity, the PB curve is only shown for 3.

limit fg’,LHC with the MC result lying significantly below PB

would actually have been true for the whole distributionand in these casg@delow DHHC and above DHH®. The
: 12, ; ,
function. Instead, we have reducég — (5/2%?~(5/2.83 jfference between the two correlation corrected approaches
(e, a “tlt'? Iekfs stror&gby but ha(\j/e falle? tr? I'”C;eaﬁ The s consistent with the idea that entropic effects neglected in
net result is that condensation drops slightly. However, since(©) - - :
the plasma parameter, which is the best indicator for tthHHC would push fons away from the macroions, or in other
' §vords, that the zero temperature limit implies stronger cor-

strength of correlations, remains the same, the deviation beg|ations than the regular DHHC theory and therefore yields
tween PB theory and MC simulation are always about theyen jower pressures.

same(not shown in the figune And as a consequence, the
deviation between DHHC theory, which approximately ac-
counts for correlations, and the MC simulation, which cap-
tures them all, is about the same in all three cases, and actu- In this paper we showed how to apply our previously
ally not very big. proposed local density functional approach based on a stable
correlation correction to a spherical macroion confined in a
spherical cell. One of the crucial parameters in this theory is
the sizea of the exclusion cavity of the background charge
Another strategy to check how successful our approacljensity. For pointlike ions, we suggest to associate the exclu-
captures correlations is to compute the osmotic pressure. l§ion region with the mean distance between ions as predicted
real systems this pressure will depend on correlations beoy PB theory, and for simplicity use the value present at
tween ions ofdifferent cells, something which neither our cq|i0idal contact.
theory nor actually our simulatiofof a single colloid takes By going to the zero temperature limit we were able to
into account. So in the following by “pressure” we do not, yerive an even simpler free energy functioﬁ%& . which
strictly s.peaking, refer_ to the bulk pressure of a colloidalig gimost as good as the full DHHC theory, bu':'(r:nuch easier
suspension at some given .volume fraction, but only to th§y nandle. We also derived exact expressions for the osmotic
pressure exerted on the rigid wallratR of our cell model.  hessyre in this system. We successfully compared our pre-
Within the simulations, the pressure is given by the Conjictions to simulations of the same model and compared the
tact density ar=R, which was obtained by fitting the MC iyieqrated counterion density and the osmotic pressure val-
dens@y profile close to the cell boundary to a quadre}uc eXyes for two complementary “scans” of the coupling strength,
pressionn(r) = C1+Co(r—R)% An example for how the simu-  amely, valence and plasma parameter. We demonstrated that
lated densities compare to the PB approximation, our angy |ocal density functional approach based on a stable cor-

lytic DHHC approach, and its simpler zero temperature limityg|ation correction leads to a major improvement over the PB
DHHC©, can be found in Fig. 4. prediction.

Table 1l shows the predictions for the pressure in the case
of pointlike ions given by PB , DHHC , and DHH® theory,
as well as by MC simulations. In the case of PB theory and
MC the pressure is simply the density at the outer boundary, This work was supported by the Brazilian agency CNPq
while for the DHHC approach we employ E@L9) and for  (Conselho Nacional de Desenvolvimento Cientifico e Tec-
DHHC© Eq.(20). These data, as well as Fig. 4, demonstratenolégico and the German Science FoundatigBFG)
that—as anticipated—the simulated pressures lie below th#dwrough SFB 625, TR6, Ho0-1108/11-1, and De775/1-2.
PB prediction. This decrease in pressure is rather accurateM.C.B. would like to thank Professor K. Kremer for the
captured by our functiondbc and by its zero temperature hospitality extended her during her stay in Mainz.

VI. CONCLUSIONS

B. Osmotic pressure
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TABLE II. The values of the various pressur@s unitskgT/€3) for the systems 1—6. The MC errors have
been conservatively estimated from the fluctuations of the measured density around the fit close to the cell
boundary. The last three columns display the ratio between the theoretical and MC values, illustrating which
theories overestimate or underestimate the pressure, and by how much.

Systems  fllpgt®  Pllpyuct®  AIRuct® Bllyct®  Tpg/Myc Mppnc/Tue  M3c/Te

1 2.98x10° 2.56x10° 2.39x10° 2.533)x 103 1.18 1.01 0.94

2 3.74x10* 3.58x10* 3.44x10* 3.554)x10* 1.05 1.01 0.97

3 1.58x 1073 1.42x10° 1.33x10° 1.383)x 1073 1.14 1.03 0.96

4 3.61x10° 3.02x10°% 2.81x10°% 2.955)x 1073 1.22 1.02 0.95

5 3.09x10°% 2.72x10°% 2.53x10°% 2.636)x 1073 1.17 1.03 0.96

6 4.10<10° 3.96x10°% 3.71x10°% 3.839)x10°3 1.07 1.03 0.97
APPENDIX 3N 1/3

. . . _ Zzi(£> o IT d3x,
The canonical partition functior£ of the colloid sur- NI %o "
rounded by its counterion is given by L1 L

N d®p; o, X - — 4= _

Z:f I1 %e‘ﬁm, (A1) exp{ N; Ixil ZiE;&j i _Xj|} (A3)
i=1 .

where N=Z/v is the total number of counterions and the
Hamiltonian H=7+V splits into kinetic and potential de-

grees of freedom. In the classical description employed herd this form it becomes evident that appropriately scaled
the kinetic partZ will contribute the usual factox N to the ~ thermal observables such as the integrated charge density

partition function, wherex is the thermal de Broglie wave- (measured in units of %) or the pressurémeasured in units

length. The potential energy can be expressed as of kgT¢~%) are invariant under system changes which leave
¢ 1 ¢ the number of counterionbl, the rescaled colloid sizg,
V=-N>, (A2)  =ro/¢, and the volume fractiom fixed.

_+_ .
T nl 25 -l Poisson-Boltzmann theory shows the same invariance

After rescaling all length by, i.e., introducingk: =r/¢, the ~ Property, as does the approximate density functional theory

total partition function can be written as we are proposing in this paper.
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